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Electron angular distributions in double photoionization:
Use of effective Sommerfeld parameters
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Abstract. We present calculations of the fivefold differential cross-section (FDCS) for double photoioniza-
tion of helium at excess energies of 6 and 20 eV above threshold. Our results are obtained using for the
final double-continuum state a product of three Coulomb wave functions, with the Sommerfeld parameters
modified to describe the strength of interaction of any two particles affected by the third particle. Our
calculations are compared with recent absolute measurements by Dörner et al. (Phys. Rev. A 57, 1074
(1998)), both in coplanar and non-coplanar geometries. Very good agreement is obtained for the shape of
the angular distributions, and differences in the absolute magnitude exist in comparison with the standard
choice of Sommerfeld parameters.

PACS. 32.80.Fb Photoionization of atoms and ions

1 Introduction

In recent years there has been considerable work devoted
towards understanding the mechanisms leading to the
ejection of two electrons from a charged core [1]. The dou-
ble photoionization process is of special interest, since the
electron-photon interaction is a one-body operator, and
therefore double ionization by one photon is a process en-
tirely due to electron correlation. The measurement of the
fivefold differential cross-section (FDCS) in double pho-
toionization was first performed by Mazeau et al. [2] on
Kr in 1991. On helium the first measurement of the FDCS
was done by Schwarzkopf et al. [3] in 1993. Other mea-
surements of this differential cross-section on He double
photoionization have been performed since that moment
[4–9], but these experiments provide, in general, only the
relative magnitude for the angular distribution of the ion-
ization probability lobes. Only in references [8,9] a first at-
tempt to provide absolute values was performed. Quite re-
cently absolute measurements on He were done by Dörner
et al. [10] using the COLTRIMS technique [11] for various
cases of equal and unequal energy sharing. This experi-
ment is also unique because non-coplanar measurements
were performed for the first time.

Theoretical works aiming to describe the experiments
mentioned above have been undertaken using different
methods: (i) Feagin [12] and Kazanski and Ostrovsky [13]
applied a Wannier-type theory valid in the near thresh-
old region; (ii) Pont and Shakeshaft [14] used screened
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Coulomb waves for each electron and the response func-
tion of the atom; and (iii) Maulbetsch and Briggs [15]
used a product of three Coulomb waves (usually called C3
model) to describe the double-continuum state.

The Wannier model has been applied up to 20 eV
above threshold and good results have been obtained in
relative magnitude [10], since this theory does not predict
absolute values for the cross-sections. The methods de-
scribed in (ii) and (iii) have been shown to predict the ob-
served FDCSs in relative magnitude for various coplanar
geometries. Nevertheless, the absolute values were not cor-
rectly predicted. Large differences in magnitude between
these methods have been reported [16].

Our main concern here is to apply a modified version
of the C3 approximation. The C3 model predicts incorrect
absolute values for the total cross-section near threshold
[17,18]. This incorrect behavior of the C3 approach is due
to the fact that the normalization of the electron-electron
two-body Coulomb wave function decreases exponentially
as k12 → 0, where k12 is the electron-electron relative mo-
mentum. Therefore, other alternatives to this approach
that could account for the absolute values of the obser-
vations are required. Recently, a modification of the C3
wave function has been investigated [19] in the context
of electron-atom ionization, introducing effective Sommer-
feld parameters that modify the two-body interaction in
the presence of the third particle. The results for electron-
hydrogen ionization are encouraging [20]. In the present
work we apply effective Sommerfeld parameters for
calculating FDCSs of He double photoionization.
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We compare our findings with recent measurements by
Dörner et al. [10]. We recalled that in reference [10] abso-
lute FDCS measurements have been reported.

2 Theory

The most detailed observable of the double photoion-
ization process is the fivefold differential cross-section
(FDCS) d5σ2+/dε1dΩ1dΩ2, where ε1 is the energy of one
of the electrons whose momentum k1 subtends an element
of solid angle dΩ1. The quantities labeled with 2 refer to
the other electron. The FDCS is given by (atomic units
are used throughout)

d5σ2+

dε1dΩ1dΩ2
=

4π2

c

k1k2

ω
|ê ·Tfi|

2, (1)

where the transition-matrix element here has been chosen
within the velocity gauge Tfi = 〈Ψ−f |∇1 +∇2|Ψi〉, ê is the
polarization direction, and ω is the photon energy. We also
define E = ε1 + ε2 as the total available energy. In order
to calculate accurate Tfi matrix elements we require cor-
related approximations to describe both the initial- (Ψi)
and the final-state (Ψ−f ) of the He target. For the ground
state of the helium atom we considered the wave function
developed by Bonham and Kohl [21] given by

Ψi(r1, r2) = Ni(e
−ar1−br2 + e−br1−ar2)(1 + C0e

−λ0r12).
(2)

The parameters of this wave function are given in refer-
ence [21]. The energy for the He ground state obtained
with this correlated wave function is −2.901923 a.u., close
to the well-known exact value −2.903724 a.u. For the
final-state wave function we consider a product of three
Coulomb waves (C3 model) [22,23]

Ψ−f (k1,k2|r1, r2) = P12
1

(2π)3
eik1·r1+ik2·r2

×N(ξ1)N(ξ2)N(ξ12)F1F2F12, (3)

where Fj = 1F1(iξj , 1,−ikjrj−ikj ·rj) (j = 1, 2, 12) is the
confluent hypergeometric function, N(ξj) = exp(−πξj/2)
Γ (1−iξj) is the Coulomb factor, and ξj is the Sommerfeld

parameter. In equation (3) P12 = (1+P12)/
√

2, where P12

is the exchange operator. As usual we denote r12 = r1−r2

and k12 = (k1 − k2)/2 for the interelectronic coordinate
and relative momentum, respectively. In the standard C3
approximation the Sommerfeld parameters are given by

ξj = −
Z

kj
(j = 1, 2) and ξ12 =

1

2k12
, (4)

with Z = 2 being the He nuclear charge. A modification
of this approach has been proposed [19,20], introducing
effective Sommerfeld parameters depending on the mo-
mentum vectors of the emitted electrons. One choice of
these parameters is given by

ξ′j = −
Z − (kj/4k12)sin2θA

kj
(j = 1, 2) (5)

and

ξ′12 =
1− sin2θA

2k12
· (6)

The term A in the preceding equations reads

A(k1, k2, k12) = 1−
|k1 − k2|

4k12
, (7)

and θ = 0.5cos−1(k̂1 · k̂2).
These modified Sommerfeld parameters satisfy the

condition ∑
ξj =

∑
ξ′j . (8)

This is a generalization of the Peterkop condition [24],
which was formulated initially for two Coulomb wave
functions. Equation (8) therefore guarantees the proper
asymptotic condition of the wave function when all three
particles are far away of each other. The effective charge
(Zeff ) of the ion seen by the two outgoing electrons is in
the range: Z − 1 < Zeff < Z, and Zieff → Z as kj → ∞
(i 6= j), as may be expected.

The calculation of the transition-matrix Tfi was done
using the numerical code developed in reference [17]. The
inclusion of effective Sommerfeld parameters (Eqs. (5, 6))
into the code is straightforward.

3 Results and discussion

We present in this section results for the fivefold differen-
tial cross-section using effective Sommerfeld parameters
(Eqs. (5, 6)) into the C3 model (Eq. (3)), and using the
standard version of this approach (Eqs. (3, 4)). Our re-
sults are confronted with recent absolute measurements
reported in the work by Dörner et al. [10].

In Figure 1 we show the He FDCS in coplanar geom-
etry at the photon energy ω = 99 eV. One electron is de-
tected at an angle of 30◦ with respect to the polarization
axis (ê). Results are displayed for three different energies
of this electron: 2 eV, 10 eV and 18 eV, in Figures 1a–
1c, respectively. The solid lines are the calculations using
the effective Sommerfeld parameters, the dashed lines are
those using the standard C3 model, and the dot-dashed
lines are the ones using the fourth-order Wannier theory of
Feagin (as appear in Ref. [10]). This particular set of data
has been chosen for two reasons: first, our calculations are
expected to work better at higher energies, and 99 eV is
the highest energy presented in the data of reference [10];
and second, the Wannier-model calculations do not work
very well in these cases, because 20 eV above threshold
is far off the Wannier saddle. We observe that our results
give similar angular patterns to those of the Wannier cal-
culations, although for some angles the agreement with the
experiments is better using our approach. C3 calculations
using both choices of Sommerfeld parameters give nearly
the same angular patterns, although differences appear at
the level of the absolute magnitude. Both C3 calculations
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Fig. 1. The FDCS in coplanar geometry for a photon energy of 99 eV. The first electron is ejected at an angle θ1 = 30◦ with
respect to the polarization axis (ê). (a) ε1 = 2 eV, (b) ε1 = 10 eV, and (c) ε1 = 18 eV. Solid line: C3 model with effective
Sommerfeld parameters (Eqs. (5, 6)) and initial state of reference [21]. Dashed line: standard C3 model with the same initial
state. Dot-dashed line: fourth-order Wannier calculation of Feagin (Ref. [10]). Heavy dots: experimental results of reference [10]
for θ1 = 20−40◦, ϕ1 = 0−20◦, and ε1/E = 0−0.2, 0.5, 0.8−1 for (a), (b), and (c), respectively. The data are on absolute scale
in 10−4 a.u.; the lines are scaled to the figure. Note that, although the Wannier calculations are not absolute, our results have
been adjusted at one point to the data. The true maxima are in each case: (a) 1.16 × 10−5 a.u., (b) 1.65 × 10−5 a.u., and (c)
1.10× 10−5 a.u. for C3∗, and (a) 1.02 × 10−5 a.u., (b) 1.39× 10−5 a.u., and (c) 9.22× 10−6 a.u. for C3 calculations. Here C3∗

refers to the C3 model with the effective Sommerfeld parameters, and C3 to the standard approach.

Fig. 2. The FDCS in non-coplanar geometry for a photon energy of 85 eV. The first electron is ejected at an angle θ1 = 52.5◦,
and with an azimuthal angle (with respect to the plane defined by ê and k2) ϕ1 = 67.5◦. (a) ε1 = 0.6 eV, (b) ε1 = 3.0 eV,
and (c) ε1 = 5.4 eV. The curves are labeled as in Figure 1. Heavy dots: experimental results of reference [10] for θ1 = 40−65◦,
ϕ1 = 45−90◦, and ε1/E = 0−0.2, 0.5, 0.8−1 for (a), (b), and (c), respectively. The data are on absolute scale in 10−4 a.u.; the
lines are scaled to the figure. The true maxima are in each case: (a) 1.70× 10−7 a.u., (b) 3.71× 10−7 a.u., and (c) 1.60× 10−7

a.u. for C3∗, and (a) 8.77× 10−8 a.u., (b) 1.28× 10−7 a.u., and (c) 8.10 × 10−8 a.u. for C3 calculations.

are smaller than the data at 99 eV; however, we note that
the use of effective Sommerfeld parameters gives results
closer in magnitude to the observed FDCSs.

In Figure 2 we show results at a lower photon energy
(ω = 85 eV). In this case the calculations have been per-
formed for a non-coplanar geometry. The structures of the
predicted lobes obtained using our approach are now also
similar to the measured data. The Wannier-model calcula-
tions reproduce very well these data because we are in an
energy region where this approach is accurate. We found
that the use of effective Sommerfeld parameters is able
to describe better some features, for example the lobe at
θ2 ' 190◦ in Figure 2a. The striking fact is that the use

of effective Sommerfeld parameters gives now a factor of
two with respect to the standard C3 calculations. This
would indicate that the exponential decrease in the abso-
lute value of the cross-section for E → 0 is attenuated, at
least partially, by the use of effective Sommerfeld param-
eters.

We point out that in the experimental data the one-
electron values (ε1, θ1, ϕ1) were recorded within specific
ranges. In our calculations we used for ε1, θ1, and ϕ1 the
midpoint of the corresponding data intervals, as was also
done for the Wannier calculations in reference [10]. We re-
mark that for a complete comparison with the experiment
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the calculations should be done in the form

1

∆ε1

1

∆θ1

1

∆ϕ1

∫
dε1

∫
sinθ1dθ1

∫
dϕ1

d5σ2+

dε1dΩ1dΩ2
·
(9)

However, calculations using acceptance ranges as in equa-
tion (9) would demand in our case important computa-
tional work. Some differences may arise if the calculations
are performed using equation (9), but the changes are ex-
pected to be minor ones.

In conclusion, we have presented results for fivefold
differential cross-sections in double-photoionization using
effective Sommerfeld parameters into the C3 model. We
have compared these calculations with recent absolute
measurements performed by Dörner et al. [10]. The use
of this method give angular distributions similar to those
predicted by the standard C3 model, although there are
differences in the absolute magnitude given by both ap-
proaches. Our calculations and those using the Wannier-
type theory of Feagin [12] give similar results for the shape
of the distributions. Regarding the measurements [10], our
calculations provide a better agreement at the level of ab-
solute values at excess energies of 20 eV. The final-state
descriptions used in the present work improve when the
photon energy increases; we expect that for excess en-
ergies much larger than 20 eV a closer agreement with
experimental data at the level of absolute values will be
obtained. Finally, we would like to mention the recent
work of Kheifets and Bray [25] using the convergent close-
coupling (CCC) technique applied to the calculations of
FDCSs. In that work, the CCC method’s results were
shown to agree with the absolute measurements of ref-
erences [8,9].
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